

Technology and Trends in Weather and Climate

Helping business mitigate the challenges of increasingly volatile weather

Why does Weather matter?

Weather impacts the economy

- ". . . 16.2\% of the aggregate U.S. economy is sensitive to weather on an annual basis" (National Center for Atmospheric Research)
$=$ •".. $1 / 3$ of the private industry activities, representing annual revenues of some $\$ 3$ trillion, have some degree of weather and climate risk." (Penn State University)
- ". . . \$11 Billion of losses each year due to weather" (Executive office of President United States)

Weather impacts Ag customers

- ". . . >75\% of all summertime Energy outages are Weather related (lightning)"

- ". . . The single largest variable in crop yields is Weather"
- ".... 25\% of all Transportation accidents are Weather related"

ก1 " $\ldots .>90 \%$ of crop insurance losses are due to Weather factors"

Key Trends in Weather Forecasts

More data and observations

More models and better forecasts

Probabilistic forecasts

More Data and Observations

- Today: Growing public/private weather station networks
- Thousands of stations - DTN's Local Weather Station network
- Updating every 5-60 minutes
- Tomorrow: Connected vehicles
- Millions of observations
- Updating every 5-60 seconds
- The Future: Mobile devices
- Millions upon millions of observations
- Updating in real-time!

- More observations = better forecast accuracy

More models and better forecasts

- More weather models
- More centers
- US NWS, ECMWF, Env. Canada, Australian BoM....
- Higher resolutions
- By 2016, 10km global resolution
- By 2020, 4km global resolution
- Higher data volumes
- Halving the resolution is a 4 X increase in volume

- Better weather forecasts

- Forecast skill doubles every 15 years
- Today, forecasts have skill out to 8 days
- By 2020, forecasts will have skill out to 10 days

NCEP Operational Forecast Skill 36 and 72 Hour Forecasts @ 500 MB over North America [100 * (1-S1/70) Method]
$\rightarrow-36$ Hour Forecast $\rightarrow 72$ Hour Forecast

Probabilistic information adds value to forecasts

- Weather forecasts are inherently uncertain
- However, understanding the probabilities can aid in decision making
- The increasing amount of observational and model data make probabilistic forecasts better
- Precipitation
- What does a 50% chance mean?
- Are there better ways to communicate uncertainty?
- Probability of Exceedance
- Probability that a specific event will occur

[^0]
Technology is driving weather forecast improvements

- More and better (and cheaper) observations
- Bigger and faster computers
- Integration of weather data into decision support apps

Trends in climate impacts

Increased volatility and vulnerability
More extreme weather events
Continued impacts to weather and water businesses

What about 2015?

- Likely to be the warmest year on record
- Proximate Cause: One of the three strongest El Nino's ever recorded
- What is the relationship to climate?

2015 RUNNING AWAY
 Average Global Temperature Anomalies (${ }^{\circ} \mathrm{F}$)

Weather and Climate

- Climate is weather over years and years
- "Climate is what you expect, and weather is what you get."
- The climate is changing, but climate change is nothing new
- Surface warming is likely to continue
- One of the consequences of climate change is an increase in volatility
(a) Global-Mean Surface Temperature Anomaly $\left({ }^{\circ} \mathrm{C}\right)$

Increased volatility and vulnerability

- More persistent weather patterns

Slower, wavier jetstream

Strong polar vortex: faster jet stream winds

Weak polar vortex: slower winds, more waves

More extreme weather events

- The frequency of extreme weather events will increase
- The cost of these events will rise
- This trend is likely to continue for several decades

Continued impacts to agriculture

- Impacts
- More excessive rainfall events
- More flooding
- Increased drought severity and extent
- More frequent and intense coastal storms and hurricanes
- More Black Swan events
- Preparation is key
- Risk awareness
- Use of forecasts
- Integration into decision aids

Contiguous U.S. Extremes in 1-Day Precipitation (Step 4*) Warm Season (April-September) 1910-2013 $\sum_{\substack{\text { Binoint } \\ \text { Filter }}}^{\substack{\text {-Pal }}}=$ Mean -|. Actual 22

Questions?

[^0]: P5-5\% chance that temp will exceed this value

