

Technology and Trends in Weather and Climate

Helping business mitigate the challenges of increasingly volatile weather

Jim Block
Certified Consulting Meteorologist
Fellow of the American Meteorological Society

Why does Weather matter?

Weather impacts the economy

• ". . . 16.2% of the aggregate U.S. economy is sensitive to weather on an annual basis" (National Center for Atmospheric Research)

- ". . . 1/3 of the private industry activities, representing annual revenues of some \$3 trillion, have some degree of weather and climate risk." (Penn State University)
 - ". . . \$11 Billion of losses each year due to weather" (Executive office of President United States)

Weather impacts Ag customers

• ". . . >75% of all summertime Energy outages are Weather related (lightning)"

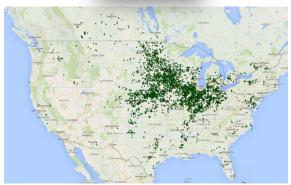
• ". . . The **single largest variable** in crop yields is Weather"

• ".... 25% of all Transportation accidents are Weather related"

• ".... >90% of crop insurance losses are due to Weather factors"

Key Trends in Weather Forecasts

More data and observations


More models and better forecasts

Probabilistic forecasts

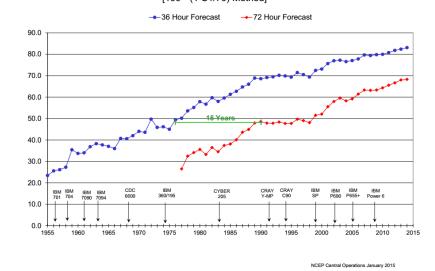
More Data and Observations

- **Today**: Growing public/private weather station networks
 - Thousands of stations DTN's Local Weather Station network
 - Updating every 5-60 minutes
- Tomorrow: Connected vehicles
 - Millions of observations
 - Updating every 5-60 seconds
- The Future: Mobile devices
 - Millions upon millions of observations
 - Updating in real-time!

DTN Local Weather Station Network - 3,500 stations

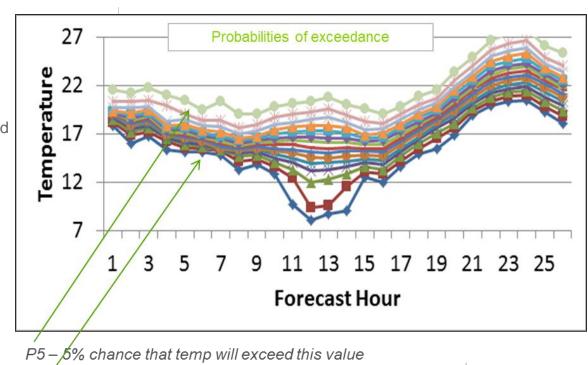
More observations = better forecast accuracy

More models and better forecasts


- More weather models
 - More centers
 - US NWS, ECMWF, Env. Canada, Australian BoM....
 - Higher resolutions
 - By 2016, 10km global resolution
 - By 2020, 4km global resolution
 - Higher data volumes
 - Halving the resolution is a 4X increase in volume
- Better weather forecasts
 - Forecast skill doubles every 15 years
 - Today, forecasts have skill out to 8 days
 - By 2020, forecasts will have skill out to 10 days

NCEP Operational Forecast Skill

36 and 72 Hour Forecasts @ 500 MB over North America [100 * (1-S1/70) Method]



Probabilistic information adds value to forecasts

- Weather forecasts are inherently uncertain
 - However, understanding the probabilities can aid in decision making
 - The increasing amount of observational and model data make probabilistic forecasts better
- Precipitation
 - What does a 50% chance mean?
 - Are there better ways to communicate uncertainty?
- Probability of Exceedance
 - Probability that a specific event will occur

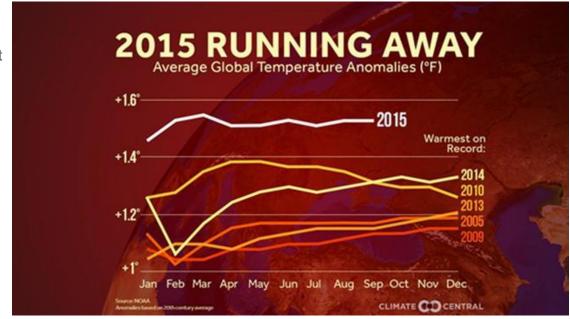
P95 – 95% chance that temp will exceed this value

Technology is driving weather forecast improvements

- More and better (and cheaper) observations
- Bigger and faster computers
- Integration of weather data into decision support apps

Trends in climate impacts

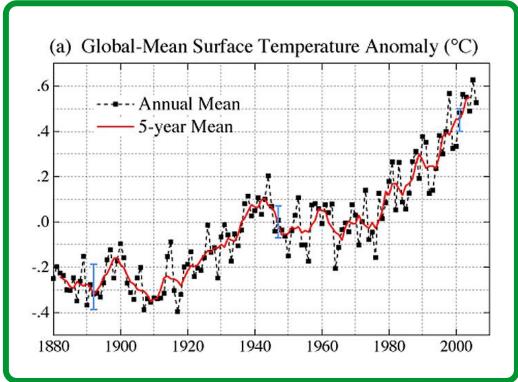
Increased volatility and vulnerability


More extreme weather events

Continued impacts to weather and water businesses

What about 2015?

- Likely to be the warmest year on record
 - Proximate Cause: One of the three strongest El Nino's ever recorded
- What is the relationship to climate?



Source: NOAA

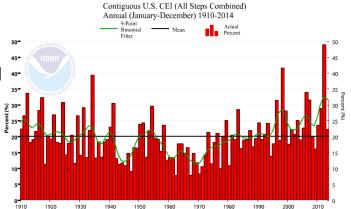
Weather and Climate

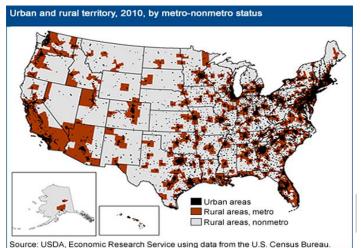
- Climate is weather over years and years
 - "Climate is what you expect, and weather is what you get."
- The climate is changing, but climate change is nothing new
 - Surface warming is likely to continue
- One of the consequences of climate change is an increase in volatility

Increased volatility and vulnerability

- Extreme weather events are occurring with increased frequency
 - Could be forced by arctic warming
- Increased exposure and vulnerability
 - Increased urbanization
- More persistent weather patterns

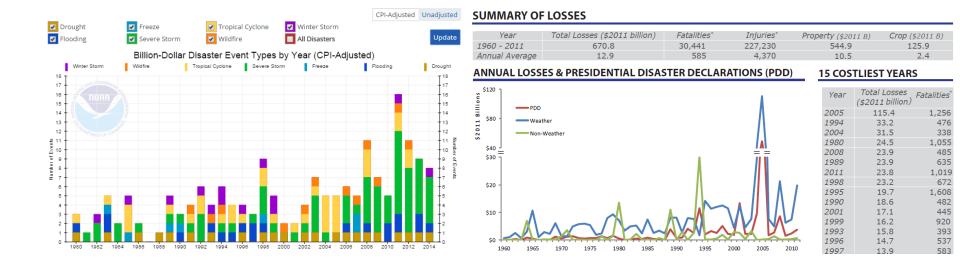
Slower, wavier jet stream

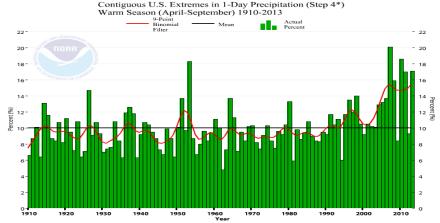


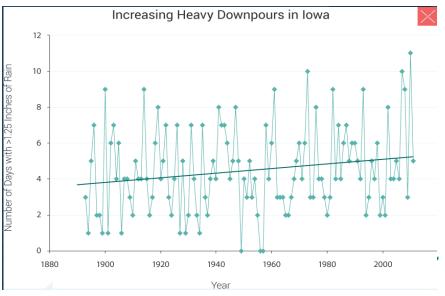

Strong polar vortex:

faster jet stream winds

Weak polar vortex: slower winds, more waves




More extreme weather events


- The frequency of extreme weather events will increase
- The cost of these events will rise
- This trend is likely to continue for several decades

Continued impacts to agriculture

- Impacts
 - More excessive rainfall events
 - More flooding
 - Increased drought severity and extent
 - More frequent and intense coastal storms and hurricanes
 - More Black Swan events
- Preparation is key
 - Risk awareness
 - Use of forecasts
 - Integration into decision aids

Questions?

