DTN Ag Summit Chicago, Ill

Water Quality and Freedom To Operate

Tim Smith Eagle Grove, IA

Ready to Change? How are you going to farm without a plow?

Fall Growth *Cereal rye seeded with floater, 10/2/2012*

Cereal Rye Spring Growth Early March 2012

Cereal Rye Spring Growth

8"-10" tall, 800# biomass / acre, 30# of N uptake by rye = \$15.00/acre

Cereal Rye Termination

Spray when daytime temp. is warmer than 50F

Termination Timing *Spray rye 14 days before planting corn*

Notice the tilled field across the fence...

Nutrient Management Practices

- Delay nitrogen application until spring or side dress
- Late spring nitrate test (for N side dress applications)
- Tissue samples of corn plant @ V10
- Grid soil sampling (2.5 ac grids)

Nutrient Management Practices

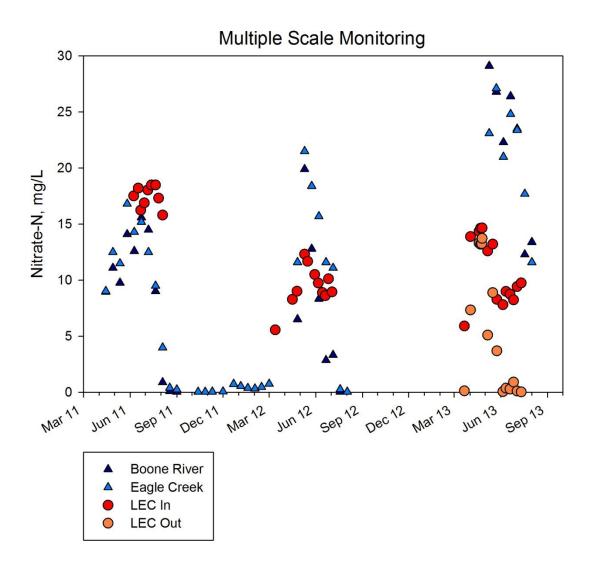
- Late summer stalk nitrate testing of corn plants
- Water monitoring of field tile water (testing for nitrate levels)
- Written nutrient management plan

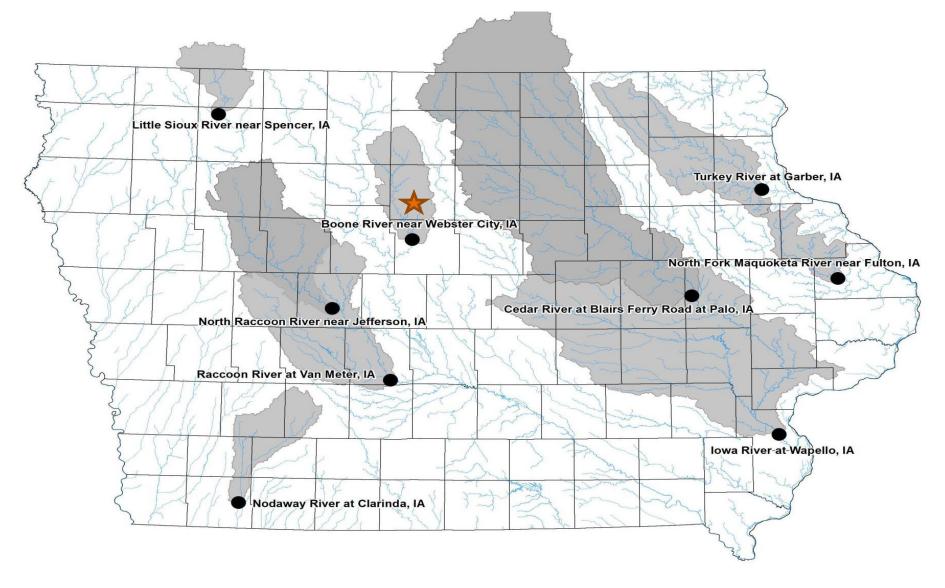
Corn Harvest – Late Sept. 2012 170 bushels/acre with 15" of rainfall

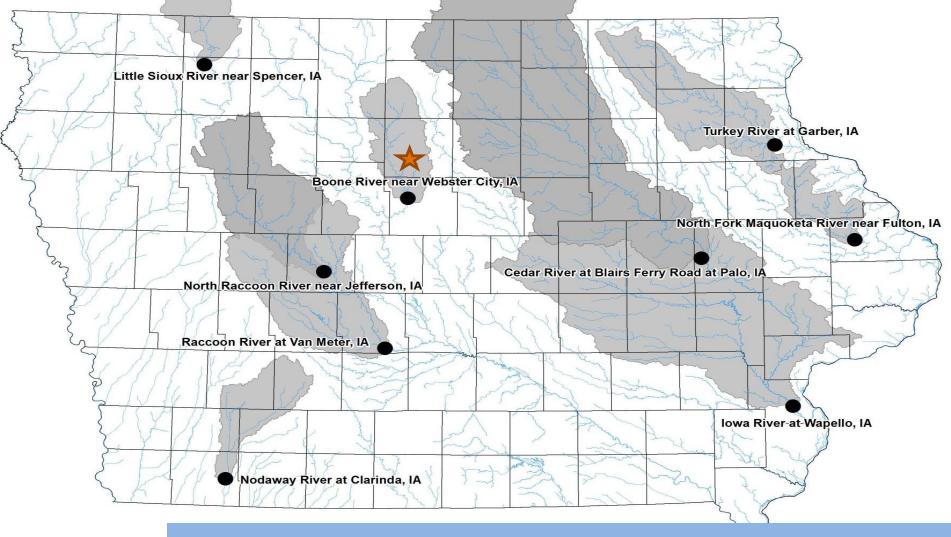
Rye & Radish

Oats Mix

Woodchip Bioreactor 110' x 10' x 5'




125 cubic yards of wood chips



Mississippi River Basin Initiative (MRBI)

1671 Tons of N Daily Load *April 1 – July 3, 2013*

NH3 plant produces 902 ton of N /day Daily loss from 9 watersheds = 1671 ton/day from April 1st to July 3rd 2013

	Practice	Comments	<mark>% Nitrate-N</mark> Reduction ⁺	% Corn Yield Change++
			Average (SD*)	Average (SD*)
ent	Timing	Moving from Fall to Spring Pre-plant Application	6 (25)	4 (16)
		Spring pre-plant/sidedress 40-60 split Compared to Fall Applied	5 (28)	10 (7)
		Sidedress - Compared to Pre-plant Application	<mark>7</mark> (37)	0 (3)
		Sidedress – Soil Test Based Compared to Pre-plant	4 (20)	13 (22)
agem	Source	Liquid Swine Manure Compared to Spring Applied Fertilizer	4 (11)	0 (13)
n Man		Poultry Manure Compared to Spring Applied Fertilizer	-3 (20)	-2 (14)
Nitrogen Management	Nitrogen Application Rate	Reduce to Maximum Return to Nitrogen value 149 kg N/ha (133 lb N/ac) for CS and 213 kg N/ha (190 lb N/ac) for CC	10‡	-1‡‡
	Nitrification Inhibitor	Nitrapyrin – Fall - Compared to Fall- Applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	<mark>31</mark> (29)	-6 (7)
		Oat	28 (2)**	-5 (1)
	Living Mulches	e.g. Kura clover - Nitrate-N reduction from one site	41 (16)	-9 (32)
	Perennial	Energy Crops Compared to Spring- Applied Fertilizer	72 (23)	-100 ×

Table 1. Nitrogen reduction practices – potential impact on nitrate-N reduction and corn yield based on literature review.

+ A positive number is nit ++ A positive corn yield c practices are not expecte * SD = standard deviatior ‡ Reduction calculated ba

Nitrogen Reduction Practices

- Timing (Sidedress vs. preplant) = 7%
- Nitrogen Application rate (MRTN) = 10%
- Cover Crops (cereal rye) = 31%
- Bioreactors = 43%

‡‡ Calculated based on the Maximum Return to Nitrogen (MRTN) relative yield at the given rates.

** Based on 1 study with 3 years of corn and 2 years of soybean.

*** This number is based on the Land Retirement number – there are no observations to develop a SD.

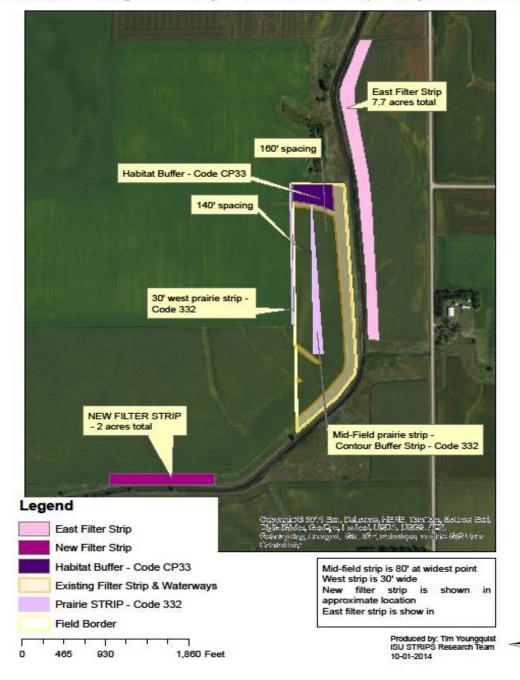
Table 2. Practices with the largest potential impact on phosphorus load reduction.

Notes: Corn yield impacts associated with each practice also are shown as some practices may be increase or decrease corn production. See text for information on value calculations.

	Practice	Comments	% Phosphorus Load Reduction ^a	% Corn Yield Change ^b
			Average (SD ^c)	Average (SD ^c)
ន	Phosphorus	Applying P based on crop removal - Assuming optimal soil-test P level and P incorporation	0.6 ^d [70 ^e]	o ^f
ractic	Application	Soil-Test P – Producer does not apply P until soil-test P drops to the optimal level	<mark>.17[⊑]</mark> [40 ^ʰ]	O ^f
1 de		Site-specific P management		O ^f
nageme	Source of	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application	46 (45)	-1 (13)
Phosphorus Management Practices	Phosphorus	Beef manure compared to commercial fertilizer – Runoff shortly after application	46 (96)	
Phospho	Placement of	Broadcast incorporated within one week compared to no incorporation – Same tillage	36 (27)	o ^f
	Phosphorus	With Seed or knifed bands compared to surface application without incorporation	<mark>24</mark> (46) [35 ⁱ]	O ^f
and	Tillage	Conservation till – chisel plowing compared to moldboard plowing	33 <mark>(</mark> 49)	0 (6)
ol a ang		No till compared to chisel plowing	<mark>90</mark> (17)	-6 (8)
on Contro I Use Cha Practices	Crop Choice	Extended rotation	j	7 (7) ^k
Use Sect	Perennial	Energy crops	34 (34)	NA
Erosion Control and Land Use Change Practices		Land retirement (CRP)	75	NA
a di		Grazed pastures	59 (42)	NΔ

Phosphorus Reduction Practices
Wait to apply until optimal soil-test P level = 17%
P placement (banded under surface) = 24%
No-tillage vs. chisel plow = 90%

were conducted at several locations and over several years but may, or may not, represent conditions in all lowa fields. i - Numbers are from a report by (Dinnes, 2004) and are the author's professional judgment.

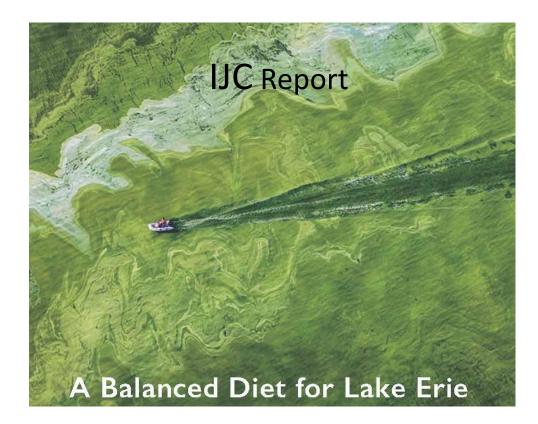

Edge-of-

d - N requ e - T appl

lowa f-In g-N

h - Estimates made non-unpublished work by Malanno (2011) in conjunction with the lowar-index and Malanno and Frater (2007). These studies

Tim Smith - Wright County - Annotated Strips Layout - DRAFT



Regulation vs Freedom to Operate

Battle Lines Drawn On EPA's Chesapeake Bay TMDL Authority

The 21 State Attorneys General's amicus brief, filed in February, also challenged EPA's authority over state authority.

Questions?

Sean McMahon 515-334-1480 smcmahon@iowaagwateralliance.com

Tim Smith 515-293-0008 htimsmit@wmtel.net